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In this paper, we re-derive some known transfer functions to reduce FLDI data. We derive

additional transfer functions intended to model increasingly complex disturbance fields that

account for disturbances not only in the streamwise direction, G, but the two spanwise directions,

H and I, as well. Performing experiments with a round, turbulent jet, we show that increasing

the complexity of the transfer function has merit with some qualifications.

I. Introduction
Focused laser differential interferometry (FLDI) is a novel nonparticle-based optical flow diagnostic technique

pioneered by Smeets[1–6] and Smeets and George[7] in the 1970s. Smeets and George demonstrated the use of

FLDI for measurements of a density profile within a shock front, unsteady boundary layers, and, amongst other

things, developed an eight beam pair FLDI set-up to examine the flow field around a blunt cone. From the 1980s to

the 2000s, other researchers have used laser differential interferometry (LDI) to make measurements in high-speed

flows.[8–13] More recently, Parziale et al.[14–20] used the FLDI technique to characterize facility disturbance level

and boundary-layer instability and transition in the Caltech T5 reflected-shock tunnel. Since that time researchers have

made additional advancements including making reliable convective velocity measurements between two closely spaced

FLDI probe volumes,[21–28] facility disturbance-level characterization[29–31], and novel beam shaping techniques

for application in hard-to-access flows.[32–36] Additionally, researchers have devised controlled problems[37–39] to

test the data-reduction strategies by Fulghum[40], Settles and Fulghum[41], and Schmidt and Shepherd[42].

Transfer functions are used to relate the measured FLDI response to that of an ideal FLDI instrument. For an FLDI

system, the changing size of the beam along the beam propagation axis and the different points of the disturbance

field that are being probed need to be incorporated into the transfer function. In this paper, we propose a method to

formulate transfer functions for the FLDI instrument from first principles, present transfer functions for disturbance

fields of increasing complexity, and apply these transfer functions to the measured FLDI response as the instrument

probes the exit flow of a free-jet.

II. Model of the FLDI and Relation to Voltage Output
In an FLDI system, two beams traverse closely-spaced paths (in this case, the I direction - see Fig. 1) and are mixed

with a polarization optic and then registered at a photodetector. The voltage response, + , from the photodetector is the

integrated intensity over the sensor face,

+ = �̄�'('! = '('!

∬
�(

�� (G, H)3�(, (1)

where �� (G, H), �̄� , '(, '!, and �( are the intensity at the detector face, integrated intensity, the responsivity of the

photodetector, the load resistance, and the sensor area, respectively. The intensity at photodetector face can be related

to the phase change as

�̄� = �̄1 + �̄2 + 2
√
�̄1 �̄2 cos(ΔΦ), (2)

where �̄1 and �̄2 are the integrated intensity of each FLDI beam. Assuming �̄1 = �̄2 = �̄0/2 and the instrument is shifted

by c/2 to the middle of a fringe, this reduces Eq. 2 to

�̄� = �̄0 + �̄0 sin(ΔΦ). (3)
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Fig. 1 Representation of FLDI beam pairs at spatial origin.

Equations 1 and 3 can be combined to relate the voltage to the phase change as

ΔΦ = sin−1

(
+� −+0

+0

)
. (4)

Assuming that the beam propagation direction is in the I−direction, the phase-response of the FLDI is sensitive to

optical-path-length ($%! =

∫
=3I) differences between the two beams at the detector as

ΔΦ =
2c

_
($%!1 −$%!2) =

2c

_

(∫
=(G, H, I) 3B1 −

∫
=(G, H, I) 3B2

)
, (5)

where =(G, H, I) is the index of refraction of the disturbance field, _ is the wavelength of the laser, and B1 and B2 are the

paths of the two FLDI beams. As such, to calculate the OPL of an FLDI beam that will be registered at a photodetector,

we weight the local index of refraction by the local intensity. We write this as

$%! =

∫
=3B =

1∬
�
� (G, H, I) 3�

∬
�

∫
B

� (G, H, I)=(G, H, I) 3I 3�. (6)

That is, this model weighs more heavily those changes in index-of-refraction which occur at higher levels of intensity.

This is because the phase change is related to the voltage (Eq. 4), and the voltage is linearly proportional to the beam

intensity (Eq. 1). We assume a Gaussian beam with an intensity profile given by

� (G, H, I) = 2

F(I)2c
exp

[−2(G2 + H2)
F(I)2

]
, (7)

where F(I) is the 1/42 radius of the beam varying along its propagation axis, I, and is given by

F(I) =

√√√√
F2

0

©
«
1 +

[
_I

cF2
0

]2ª®¬
, (8)
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where, F0 is the beam waist radius at the point of best focus. For a Gaussian beam,
∬ ∞
−∞ � (G, H, I) 3G3H = 1 for any I.

With these assumptions, we can write Eq. 5 as

ΔΦ =
2c

_

[∬ ∞

−∞

∫
B

�

(
G − ΔG

2
, H, I

)
=(G, H, I) 3I 3G 3H −

∬ ∞

−∞

∫
B

�

(
G + ΔG

2
, H, I

)
=(G, H, I) 3I 3G 3H

]
. (9)

Here, we model the OPL difference by weighting the OPL of each beam with the beam intensity. Each FLDI beam

is displaced from the origin by half the beam spacing, ΔG, along the ordinate as �
(
G ± ΔG

2
, H, I

)
, as in Fig. 1. The

Gladstone-Dale relation is = =  d + 1, where  is the Gladstone-Dale constant and d is the local density. Plugging

the Gladstone-Dale relation into Eq. 9 and dividing by the beam spacing yields

ΔΦ

ΔG
=

2c 

ΔG_

[∬ ∞

−∞

∫
B

�

(
G − ΔG

2
, H, I

)
d(G, H, I) 3I 3G 3H −

∬ ∞

−∞

∫
B

�

(
G + ΔG

2
, H, I

)
d(G, H, I) 3I 3G 3H

]

=
2c 

ΔG_

[∬ ∞

−∞

∫
B

[
�

(
G − ΔG

2
, H, I

)
d(G, H, I) − �

(
G + ΔG

2
, H, I

)
d(G, H, I)

]
3I 3G 3H

]

=
2c 

ΔG_

[∬ ∞

−∞

∫
B

d(G, H, I)
[
�

(
G − ΔG

2
, H, I

)
− �

(
G + ΔG

2
, H, I

) ]
3I 3G 3H

]
.

(10)

III. Relation of Discrete Phase Change to Differential Phase Change via Transfer Function
Ideally, an FLDI instrument would be able to measure differential, not discrete, changes in density, as the results

may be more easily understood in frequency space. Following SS [42] and SF [41], we decrease the separation distance

between the beams to a small value as
3Φ

3G
= lim

ΔG→0

ΔΦ

ΔG
(11)

Substituting Eq. 10 into equation Eq. 11 for ΔΦ

ΔG
, we get

3Φ

3G
= lim

ΔG→0

[
2c 

_ΔG

[∬ ∞

−∞

∫
B

�

(
G − ΔG

2
, H, I

)
d(G, H, I)3I3G3H −

∬ ∞

−∞

∫
B

�

(
G + ΔG

2
, H, I

)
d(G, H, I)3I3G3H

]]
,

(12)

which reduces to

3Φ

3G
=

2c 

_

[∬ ∞

−∞
� (G, H, I)

∫
B

(
lim
ΔG→0

dG+ΔG (G, H, I) − dG (G, H, I)
ΔG

3I

)
3I 3G 3H

]
, (13)

and, finally,

3Φ

3G
=

2c 

_

[∬ ∞

−∞
� (G, H, I)

∫
B

3d

3G
3I3G3H

]
=

2c 

_

[∬ ∞

−∞
� (G, H, I)3G3H

∫
B

3d

3G
3I

]
. (14)

To further simplify, we note
∬ ∞
−∞ � (G, H, I) 3G 3H = 1, and, to eliminate the line integral in Eq. 14, we approximate the

integration length to be equal to the characteristic length of the probe volume, !%,

3Φ

3G
=

2c !%

_

3d

3G
. (15)

Solving for
3d

3G
and taking the Fourier transform of Eq. 15, we find

F
{
3d

3G

}
=

_

2c !%

F
{
3Φ

3G

}
. (16)

We compute the Fourier transform of the density derivative using properties of the Fourier transform as

8^GF {d} = _

2c !
F

{
3Φ

3G

}
. (17)
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Now, we define a system transfer function of the FLDI instrument as the ratio of the measured instrument output at the

detector to the expected instrument output of an ideal FLDI instrument,

� ≡
[
ΔΦ

ΔG

]
measured[

3Φ
3G

]
ideal

. (18)

Using the definition of the transfer function, �, we relate the output of the instrument to the first derivative of the

phase field. Solving for the derivative of the phase change in Eq. 18, we can make a substitution into Eq. 17 to obtain

a relationship in frequency space between the measured fluctuations in phase to the actual density fluctuations as

F {d} = 1

8^G

_

2c !%ΔG
F

{
ΔΦ

�

}
. (19)

Now, we must model the disturbances to determine �.

IV. Derivation of Transfer Functions
In this section, we will re-derive transfer functions that were introduced by SS [42] and SF [41]. We will also

introduce new transfer functions that attempt to capture more general flow disturbances.

To first re-derive the work in SS [42] and SF, we assume a sinusoidal disturbance in G, uniform in H, and

infinitesimally thin in I at I = 0, of the form

d = d(G, H, I) = �B8=(^G + qG)X(I), (20)

where X(I) is the Dirac delta. For simplicity, we set � = 1. Substituting the chosen form of the disturbance into Eq. 10

allows us to evaluate the line integral as

ΔΦ

ΔG
=

2c 

_ΔG

[∬ ∞

−∞
sin(^G + qG)

(
�

(
G − ΔG

2
, H

)
− �

(
G + ΔG

2
, H

))
3G3H

]

=
2c 

_ΔG
2 sin

(
^ΔG

2

)
exp

(
−F

2^2

8

)
cos(qG).

(21)

To evaluate the transfer function � for this disturbance, we must first evaluate 3Φ
3G

, so rewrite Eq. 14 as

3Φ

3G
=

2c 

_

∫
B

3d

3G
3I. (22)

Plugging Eq. 20 into Eq. 22 results in

3Φ

3G
=

2c 

_
^ cos(^G + qG)

��
G=0

=
2c 

_
^ cos(qG). (23)

The ratio of Eq. 21 to Eq. 23 is the transfer function

� (^) = 2

^ΔG
sin

(
^ΔG

2

)
exp

(
−F

2^2

8

)
, (24)

which is Eq. 18 in SS [42].

We next consider a disturbance field of the form (Fig. 2-left)

d(G, H, I) =
{

sin(^G + qG) −! ≤ I ≤ !

0 otherwise.
(25)

Substituting the chosen form of the disturbance into Eq. 10 yields

ΔΦ

ΔG
=

2c 

ΔG_

∫ !

−!

∬ ∞

−∞
sin(^G + qG)

[
�

(
G − ΔG

2
, H, I

)
− �

(
G + ΔG

2
, H, I

)]
3G 3H 3I

=
2c 

ΔG_
2 sin

(
^ΔG

2

)
cos(qG)

∫ !

−!
exp

(
−F(I)

2^2

8

)
3I

=
2c 

ΔG_
2 sin

(
^ΔG

2

)
cos(qG)

2
√

2c3/2F0

^_
exp

(
−
F2

0
^2

8

)
erf

[
!^_

2
√

2cF0

]
.

(26)

4

D
ow

nl
oa

de
d 

by
 N

ic
k 

Pa
rz

ia
le

 o
n 

A
ug

us
t 2

6,
 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

1-
29

07
 



Plugging Eq. 25 into Eq. 22 results in

3Φ

3G
=

2c 

_

∫ !

−!

3d

3G
3I =

2c 

_
2!^ cos(^G + qG)

��
G=0

=
2c 

_
2!^ cos(qG). (27)

The ratio of Eq. 26 to Eq. 27 is the transfer function

� =
2
√

2c3/2F0

^2_ΔG!
sin

(
^ΔG

2

)
exp

(
−
F2

0
^2

8

)
erf

[
!^_

2
√

2cF0

]
, (28)

which is similar to a combination of Eqs. 16 and 17 in SS. Eq. 28 was intended to be used as a transfer function that

would account for disturbances within a wind tunnel which had walls from −! to !. However, assuming a disturbance

has the structure of Eq. 27 may not be the best representation of a real flow field as ! becomes large realtive to 1/^.
We will now introduce disturbances of increasingly complex form. First, let there be disturbances in G and H as,

d = d(G, H, I) = sin(^G + qG) sin(^H + qH)X(I). (29)

Substituting the chosen form of the disturbance into Eq. 10 yields

ΔΦ

ΔG
=

2c 

ΔG_

∬ ∞

−∞
sin(^G + qG) sin(^H + qG)

[
�

(
G − ΔG

2
, H, I

)
− �

(
G + ΔG

2
, H, I

) ]
3G 3H

=
2c 

ΔG_
2 sin

(
^ΔG

2

)
exp

(
−F

2^2

4

)
cos(qG) sin(qH).

(30)

The ratio of Eq. 30 to Eq. 23 is the transfer function

� (^) = 2

^ΔG
sin

(
^ΔG

2

)
exp

(
−F

2^2

4

)
, (31)

where we are assuming qH = c/2 and we justify using Eq. 23 as the denominator in the transfer function as we are

only interested in the forming the spectrum from streamwise disturbances (G direction). That is, Eq. 31 accounts for

the contribution of disturbances in H to the measurement of streamwise disturbances.

We next consider a disturbance field of the form (Fig. 2-right)

d(G, H, I) =
{

sin(^G + qG) sin(^H + qH) −! ≤ I ≤ !

0 otherwise,
(32)

which following the above process yields

ΔΦ

ΔG
=

2c 

ΔG_

∫ !

−!

∬ ∞

−∞
sin(^G + qG) sin(^H + qH)

[
�

(
G − ΔG

2
, H, I

)
− �

(
G + ΔG

2
, H, I

) ]
3G 3H 3I

=
2c 

ΔG_
2 sin

(
^ΔG

2

)
cos(qG) sin(qH)

∫ !

−!
exp

(
−F(I)

2^2

4

)
3I

=
2c 

ΔG_
2 sin

(
^ΔG

2

)
cos(qG) sin(qH)

2c3/2F0

^_
exp

(
−
F2

0
^2

4

)
erf

[
!^_

2cF0

]
,

(33)

which can be used with Eq. 23 to find

� (^) = 2c3/2F0

^2_ΔG!
sin

(
^ΔG

2

)
exp

(
−
F2

0
^2

4

)
erf

[
!^_

2cF0

]
. (34)

Finally, we consider a disturbance field of the form

d(G, H, I) =
{

sin(^G + qG) sin(^H + qH) sin(^I + qI) −! ≤ I ≤ !

0 otherwise.
(35)
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Plugging this disturbance into the phase change relation yields

ΔΦ

ΔG
=

2c 

ΔG_

∫ !

−!

∬ ∞

−∞
sin(^G + qG) sin(^H + qH) sin(^I + qI)

[
�

(
G − ΔG

2
, H, I

)
− �

(
G + ΔG

2
, H, I

) ]
3G 3H 3I

=
2c 

ΔG_
2 sin

(
^ΔG

2

)
cos(qG) sin(qH)

∫ !

−!
sin(^I + qI) exp

(
−F(I)

2^2

4

)
3I

=
2c 

ΔG_
2 sin

(
^ΔG

2

)
cos(qG) sin(qH) sin(qI)

8c3/2F0

^_

× exp

[
−
F2

0

4

(
^2 + 4c2

_2

)] [
erfi

[
cF0

_
− 8!^_

2cF0

]
− erfi

[
cF0

_
+ 8!^_

2cF0

]]
,

(36)

which can be used with Eq. 23 to find

� (^) = 8c3/2F0

^2_ΔG!
exp

[
−
F2

0

4

(
^2 + 4c2

_2

)]
sin

(
^ΔG

2

) [
erfi

[
cF0

_
− 8!^_

2cF0

]
− erfi

[
cF0

_
+ 8!^_

2cF0

]]
. (37)

The discrete domain (−! ≤ I ≤ !) over which the disturbance field exists makes the above transfer function difficult

to evaluate. An attempt to simplify the computation is made using the identity 8 × erfi(I) = erf(8 × I). An equivalent

transfer function is

� (^) = c3/2F0

^2_ΔG!
exp

[
−
F2

0

4

(
^2 + 4c2

_2

)]
sin

(
^ΔG

2

) [
erf

[
8cF0

_
+ !^_

2cF0

]
− erf

[
8cF0

_
− !^_

2cF0

]]
. (38)

Further simplifying, we use the identity erf(−I) = −erf(I) and 2ℜ[erf(G + 8 × H)] = erf(G + 8 × H) + erf(G − 8 × H) with

G = !^_
2c

and H = c
_

. Equation 38 becomes

� (^) = 2c3/2F0

^2_ΔG
exp

[
−
F2

0

4

(
^2 + 4c2

_2

)]
sin

(
^ΔG

2

) [
2ℜ

[
erf

[
8cF0

_
+ !^_

2cF0

]] ]
. (39)

Fig. 2 Left: Density disturbance field of the form d = d(G, H, I) = sin(^G) existing on the domain −! ≤ I ≤ !,

with ^ = 1. Right: Density disturbance field of the form d = d(G, H, I) = sin(^G + qG) sin(^H + qH) existing on the

domain −! ≤ I ≤ !, with ^ = 1.

Alternatively, we can assume a sinusoidal disturbance in G, uniform in H, with a Gaussian width f as

d = d(G, H, I) = � sin(^G + qG) exp

(−(I − I0)2

f2

)
, (40)
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where I0 is the jet location. This disturbance may be useful to model the response of an FLDI to a turbulent jet of

width f. Plugging this form of the disturbance into the phase-change relation

ΔΦ

ΔG
=

2c 

ΔG_

∫ ∞

−∞

∬ ∞

−∞
sin(^G + qG) exp

(−(I − I0)2

f2

) [
�

(
G − ΔG

2
, H, I

)
− �

(
G + ΔG

2
, H, I

) ]
3G 3H 3I

=
2c 

ΔG_
2 sin

(
^ΔG

2

)
cos(qG)

∫ ∞

−∞
exp

(
−F(I)

2^2

8

)
exp

(−(I − I0)2

f2

)
3I

=
2c 

ΔG_
2 sin

(
^ΔG

2

)
cos(qG)

2c3/2F0f exp
[
− 1

8
^2

(
F2

0
+ 8I2

0
_2

8c2F2
0
+^2_2f2

)]
√

4c2F2
0
+ 1

2
^2_2f2

(41)

To evaluate the transfer function � for this disturbance, we rewrite Eq. 14 as

3Φ

3G
=

2c 

_

∫
B

3d

3G
3I

=
2c 

_
^ cos(^G + qG)

��
G=0

∫ ∞

−∞
exp

(−(I − I0)2

f2

)
3I

=
2c 

_
^ cos(qG)

√
cf.

(42)

The ratio of Eq. 40 to 42 is

� =

4cF0 sin
(
^ΔG

2

)
exp

[
− 1

8
^2

(
F2

0
+ 8I2

0
_2

8c2F2
0
+^2_2f2

)]
^ΔG

√
4c2F2

0
+ 1

2
^2_2f2

. (43)

For an increasingly complex disturbance in G and H with a Gaussian width f as

d = d(G, H, I) = � sin(^G + qG) sin(^H + qG) exp

(−(I − I0)2

f2

)
, (44)

yields

� =

4cF0 sin
(
^ΔG

2

)
exp

[
− 1

4
^2

(
F2

0
+ 4I2

0
_2

4c2F2
0
+^2_2f2

)]
^ΔG

√
4c2F2

0
+ 1

2
^2_2f2

, (45)

following the above procedure. Finally, assuming a disturbance in of the form

d = d(G, H, I) = � sin(^G + qG) sin(^H + qG) sin(^I + qG) exp

(−(I − I0)2

f2

)
, (46)

yields

� =

4c sin
(
^ΔG

2

)
exp

[
− 1

4
F2

0
^2

(
1 + 4c2f2

4c2F2
0
+^2_2f2

)]
^ΔGf

√
^2_2/F2

0
+ 4c2/f2

, (47)

where we’ve assumed I0 = 0 for simplicity.

V. Facility and Experimental Setup
An FLDI setup was constructed to probe the exit of a sonic free-jet. To construct the FLDI setup, the linearly

polarized laser beam produced by a Cobolt 05-01 series was expanded using a diverging lens. The expanding beam is

then expanded using a diverging lens before being passed through two diffracting optics to generate a grid of beams 6

columns wide in the streamwise x-direction and 2 rows tall in the y-direction. The collection of beams is then circularly

polarized by a quarter-wave plate before being split once more in the streamwise direction by a Wollaston prism.
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Wollaston prisms of three different separation angles were used for these experiments: 2 arcminutes, 1 arcminute, and

0.5 arcminutes. The twelve orthogonally polarized beam pairs probe the jet exit flow. The beam pairs generated by

the upbeam Wollaston prism are recombined by an equivalent Wollaston prism on the downbeam side. The interfence

generated by the individual beams in the beam pairs traversing different optical path lenghts is manifested as fluctuations

in intensity of the recombined beams and measured as changes in voltage by photodetectors. For these experiments,

measurements from two of the twelve beam pairs are presented. A schematic of the setup is presented in Fig. 3.

Fig. 3 Schematic of FLDI setup and components used to generate a turbulent jet. A combination of diffractive

optics and Wollaston prisms were used to generate the beam pairs used to probe the flow at the exit of the jet.

Beam inter- and intraspacing generated using a 2 arcminute Wollaston prism is presented in Fig. 4. The beam

interspacing was 1.639 mm, and the beam intraspacing was 262.53 `m. The beam interspacing did not change

appreciably for the other Wollaston prisms used in this experimental campaign. The beam intraspacing using the 1

arcminute Wollaston prism was 85.20 `m and the intraspacing using the 0.5 arcminute Wollaston prism was 36.34 `m.

Fig. 4 FLDI beam pairs for an FLDI setup developed using diffractive optics and a 2 arcminute Wollaston

prism pictured at the focus with an Ophir Spiricon LT665 beam profiler. The major tick marks are at 100 µm

and the minor tick marks are at 50 µm.

The free-jet was generated in a laboratory setting. Compressed air was regulated to approximately 30 PSIG in the

reservoir of a nozzle with an exit diameter of 0.147 inches. The nozzle was mounted on a platform that allowed for

independent and precise adjustment in the x-, y-, and z-directions. For these experiments, the nozzle was positioned at

the focus (z=0), 1.688 inches (x/D = 11.5) away from the FLDI beam pairs.
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VI. Results
Results from the experiments are presented in this section. The dispersion relation for each experiment was first

measured by correlation. It was determined following a procedure similar to the one described by Ceruzzi et al. [43].

An inverse tangent function was fitted to the individually calculated convective velocities to generate a continuous

dispersion relation for all frequencies. The dispersion relations determined for the different beam intraspacings in each

experiment are presented in Fig. 5.
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Fig. 5 Convective velocities and fit of dispersion relation for experiment with (a) 0.5 arcmimnute Wollaston

prism, (b) 1 arcminute Wollaston prism, and (c) 2 arcminute Wollaston prism.

Using the dispersion relation, the transfer functions derived in the previous sections were determined for each

experiment. Fig. 6 shows the transfer functions for the experiment using a 0.5 arcminute Wollaston prism. Note the

similarity in shape and magnitude of the transfer functions for idealized disturbance fields. For these disturbance fields,

the dimensional complexity of the disturbance does not seem to affect the transfer function. For disturbance fields

occupying some physical space (−! ≤ I ≤ ! or f), the transfer function tapers off depending on the width of the

disturbance in I.

Due to their poor behavior, the transfer functions of three-dimensional disturbance fields (Eqs. 39 and 47) are not

presented in this figure. We will continue to investigate these transfer functions and present our findings in future work.

Their poor behavior most likely stems from the assumption that the disturbances are perfectly correlated along the I

direction. The disturbances in G and H are also not perfectly correlated, as the simpler 1-D and 2-D transfer functions

assume; however, the ratio of the disturbance length-scale to the integration length is less problematic. That is, 1/^ is

closer in length scale to the beam waist F(I) (for G and H integration) than it is ! (for I integration).

Next, the power spectral densities (PSD) were computed for each experiment and corrected using the transfer

functions to determine the expected response of an ideal FLDI instrument subjected to a disturbance field. Results for the

experiment with a 0.5 arcminute Wollaston prism are presented in Fig. 7. As the complexity of the modeled disturbance

field is increased to better align with the actual disturbance field (round turbulent jet), the PSD approaches the expected

result. For an idealized disturbance infinitely small in space,of the form sin(^G+qG)X(I) or sin(^G+qG) sin(^H+qH)X(I),
an inertial subrange is not evident in the turbulent flowfield (Fig. 7a, c). It is not until the disturbance field more

realistically occupies a physical space that the corrections yield an inertial subrange spanning approximately a decade,

and a clear transition to the dissipation subrange at higher wavenumbers (Fig. 7b, d-f).
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Fig. 6 Calculated transfer functions for experiment with 0.5 arcminute Wollaston prism. The transfer functions

are presented with ^[ on the ordinate for consistency with the plotted power spectral densities. �B is the transfer

function that solely takes into account the changing beam size. The descriptors for the other transfer functions

follow the disturbance fields modeled in previous sections.

10

D
ow

nl
oa

de
d 

by
 N

ic
k 

Pa
rz

ia
le

 o
n 

A
ug

us
t 2

6,
 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

1-
29

07
 



10-4 10-3 10-2 10-1 100
10-20

10-18

10-16

10-14

(a)

10-4 10-3 10-2 10-1 100
10-20

10-18

10-16

10-14

(b)

10-4 10-3 10-2 10-1 100
10-20

10-18

10-16

10-14

(c)

10-4 10-3 10-2 10-1 100
10-20

10-18

10-16

10-14

(d)

10-4 10-3 10-2 10-1 100
10-20

10-18

10-16

10-14

(e)

10-4 10-3 10-2 10-1 100
10-20

10-18

10-16

10-14

(f)

Fig. 7 PSDs for experiments performed with a 0.5 arcminute Wollaston prism to generate the beam intraspacing

and a circular turbulent jet, corrected by transfer functions for disturbance fields of the form: (a) sin(^G+qG)X(I),
(b) sin(^G + qG),−! ≤ I ≤ !, (c) sin(^G + qG) sin(^H + qH)X(I), (d) sin(^G + qG) sin(^H + qH),−! ≤ I ≤ !, (e)

sin(^G + qG) exp( −(I−I0)2

f2 ), and (f) sin(^G + qG) sin(^H + qH) exp( −(I−I0)2

f2 ). Both FLDI beams in the d-FLDI setup

are shown in each figure. The black line spanning each figure depicts a slope of − 5
3
, which is the expected slope

of the inertial subrange in the Kolmogorov spectra.

11

D
ow

nl
oa

de
d 

by
 N

ic
k 

Pa
rz

ia
le

 o
n 

A
ug

us
t 2

6,
 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

1-
29

07
 



VII. Conclusion
In this paper, we re-derived some transfer functions to reduce FLDI data originally found in SS [42] and SF [41].

We derived additional transfer functions intended to account for increasingly complex disturbance fields that account

for disturbances not only in the streamwise direction, G, but the two spanwise directions, H and I, as well. Performing

experiments with a round, turbulent jet, we show that increasing the complexity of the transfer function has merit. The

best results were had when modeling the field to include disturbances in G and H over a meaningful length scale in I,

be it 2! or f. However, including modeling the field to include disturbances in I resulted in a transfer function that

did not yield meaningful results, most likely due to assumptions about how the disturbances are correlated along that

integration direction.
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